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Cellular multiplets in directional solidification
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Department of Physics and Center for Interdisciplinary Research on Complex Systems,

Northeastern University, Boston, Massachusetts 02115
~Received 23 September 1996!

We report the existence of new branches of steady state cellular structures in directional solidification. These
structures consist of repeating cellular subunits, or multiplets, each containing a set of distinct cells separated
by unequal grooves. A detailed numerical study of the symmetric model of directional solidification reveals
that all multiplets bifurcate off the main singlet solution branch in two sets. Two points on the main branch,
one corresponding to the onset of the Eckhaus instability at small cell spacing and the other to a fold of this
branch at large spacing, are argued to be separate accumulation points for each set of multiplets. The set of
structures bifurcating near the fold are morphologically similar to experimentally observed multiplets. In
contrast, those bifurcating near the Eckhaus instability do not resemble experimental shapes. Furthermore, they
are argued to be generically unstable.@S1063-651X~97!50202-9#

PACS number~s!: 81.10.Aj, 81.30.Fb
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Directional solidification of alloys or liquid crystals ex
hibits a variety of interfacial patterns. The most basic patt
is the periodic cellular array that forms when the pulli
velocityV exceeds a critical velocityVc corresponding to the
onset of the Mullins-Sekerka instability@1#. Close to onset,
this array consists of identical cells with wavelengthl that
are separated by grooves of equal depth. This regular a
has been investigated extensively, both experimentally@2–6#
and theoretically in diffusive growth models of direction
solidification @6–10#.

Recent experiments have demonstrated the existenc
more complex steady state structures in the directio
growth of succinonitrile-acetone@5#. These structures, o
‘‘multiplets,’’ consist of groups of cells that are repeate
everyN grooves. For example, the basic cellular array c
sists of singlets withN51 while a pairwise grouping of cells
leads to doublets withN52. Experimentally, these double
were found to be stable while higher order multiplets we
observed to be transient. An example of an experime
doublet from Ref.@5# can be seen in Fig. 1, which shows th
the pairwise grouping of cells to doublets leads to asymm
ric cell shapes with a broken parity. Similar parity brok
cell shapes have been found numerically in dendritic gro
in a channel in two@11,12# and three dimensions@13# and in
directional solidification@14#. In addition, higher order mul-
tiplets were found in a numerical simulation of eutec
growth (N5227) @15# and in a numerical investigation o
the one-dimensional Swift-Hohenberg equation@16#.
551063-651X/97/55~2!/1282~4!/$10.00
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In this paper, we present a numerical study of multipl
in directional solidification. Aside from the already observ
doublet@14#, we find two sets of branches of multiplets th
bifurcate from the main singlet branch. We find that the e
istence of these sets can be understood in terms of the
bility structure of the main branch using analytical arg
ments similar to those used previously to interpret
existence of multiplets in the Swift-Hohenberg equati
@16#. One set consists of multiplets that are qualitative
similar to the experimentally observed multiplets while t
other set exhibits multiplets that have morphologies that
different from the experimentally observed ones.

We have investigated the standard equations for the s
metric model with a nonconstant concentration jump at
interface. The basic equations of this model are given by

D¹2u1V]zu5] tu , ~1!

uL512d0k2j/ l T , ~2!

@k1~12k!uL#vn52DF]u]nG6

, ~3!

whereu[(C2C`)/DC is the dimensionless concentratio
field, C is the actual concentration,C` is the nominal alloy
concentration, andDC5C`(1/k21) is the concentration
jump of the reference planar interface. The values ofu on the
liquid and solid sides of the boundary are defined resp
e
FIG. 1. An example of a doublet found in th
experimental system of Ref.@5#.
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55 R1283CELLULAR MULTIPLETS IN DIRECTIONAL SOLIDIFICATION
tively by uL @Eq. ~2!# anduS5k(uL21); k is the partition
coefficient,d05G/umuDC is the chemical capillary length
whereG is the Gibbs-Thomson coefficient andm is the li-
quidus slope,l T5umuDC/g is the thermal length whereg is
the temperature gradient,D is the solute diffusivity taken to
be equal in both phases,k is the interface curvature,j is the
z coordinate of the interface,vn is the normal velocity, and
@]u/]n#6 measures the jump in the normal gradient ofu at
the boundary.

Our calculations are based on the standard boundary
gral approach@17# that allows us to recast Eqs.~1!–~3! into
the single integral equation

~11k!

2
uL5E dsG@k1~12k!uL#vn1D

3E ds
]G

]n
~12k!uL2V

3E dxG~12k!uL , ~4!

where s is the arclength coordinate along the solid-liqu
boundary andG is the Green’s function, which correspond
to Eq. ~1!. The spatially periodic steady states are found
merically using a Newton-Raphson iteration scheme of
time-independent integral. Details of this procedure can
found in @8,9#. For the material parameters we tookk50.9
corresponding to liquid crystals @18#, and d0 / l T
51.1431023. We examined the cell shapes in the nonline
regime at the constant dimensionless pulling veloc
Vd0 /D51.61431022 corresponding to 63Vc .

The complete branch diagram of steady state structure
presented in Fig. 2 where we plot the cell tip undercool
~defined asD512j tip / l T) versus the dimensionless spacin
P/N, for that particular velocity. The dimensionless spac
is defined as the dimensionless wavelength, the Peclet n

FIG. 2. Plot of cell tip undercooling vs dimensionless spac
showing the main branch~thick solid line! and multiplet branches
~thin lines!. The solid circles on the main branch indicate the poi
at which the solution becomes unstable against a perturbation
Bloch wave numberQ50. These two points correspond to th
Eckhaus instability~low P) and the fold of the singlet steady sta
branch~highP). The inset shows a magnification of the bifurcatio
sequence accumulating at the fold for highP.
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ber P5lV/D, normalized by the number of groovesN in
the subunit. Thus, the wavelength of a singlet is equal to
spacing, the wavelength of a doublet is twice its spacing,
This definition ensures that the multiplet branches in the d
gram bifurcate off the main branch in a continuous fash
although the wavelength changes discontinuously at the
furcation.

The main solution branch in Fig. 2 is represented by
thick line and corresponds to the basic regular cellular ar
with wavelengthl and wave numberq ~i.e., singlets with
N51). We have found two sets of multiplets that bifurca
off the main branch. These sets, one for highP and one for
low P, are shown as thin lines in Fig. 2. Typical shapes
the multiplets belonging to these sets are shown in Fig. 3
the highP bifurcation sequence and in Fig. 4 for the lo
P bifurcation sequence~thex andy scales are equal in Figs
3 and 4!. The inset of Fig. 2 shows a closeup of the highP
bifurcation sequence.

The existence of the multiplets can be explained by stu
ing the stability of the main branch. Using the same te

s
ith

FIG. 3. Typical shapes of the multiplets corresponding to
branches in Fig. 2 that bifurcate from the singlet branch on the h
P side near the fold. These shapes closely resemble the experi
tally observed ones.

FIG. 4. Typical shapes of the multiplets corresponding to
branches in Fig. 2 that bifurcate from the singlet branch on the
P side near the Eckhaus instability. These shapes do not have
known experimental counterpart.
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nique as in Ref.@19#, we perturb the steady states with wa
numberq, rq

0(s), with a shift along the normal direction o
the general form

rq5rq
0~s!1nq

0~s!dq,Q~s!exp@ iQls/sq
01v~Q;q!t#,

whereQP@2p/l,p/l# is the Bloch wave vector,nq
0(s) is

the normal unit vector, andsq
0 is the total arclength of the ce

over a complete period. The Floquet-Bloch theorem imp
thatdq,Q(s) is a function that has the same periodicity as
underlying steady states:dq,Q(s1sq

0)5dq,Q(s). By solving
the resulting eigenvalue problem we examined the stab
of an infinite cellular array against perturbations of all po
sible wavelengths. We have found that the main branc
unstable against a perturbation with the wave num
Q50 at two distinct values ofP. Those two points are
shown in Fig. 2 as solid circles and correspond to, resp
tively, the long wavelength Eckhaus instability at smallP
and the fold of the main branch at highP. Thus, the main
branch is stable againstQ50 perturbations forP values that
are in between these two points, which are argued below
be accumulation points for the bifurcation sequences of m
tiplet branches.

In the region between these points, on both the low a
high P sides, the main branch loses its stability to mod
with finite wave numberQ that are within the first Brillouin
zone. The first unstable mode we encounter when we
proach either accumulation point is at the edge of the fi
Brillouin zone, i.e.,Q/q50.5. As we move along the single
branch towards either of the two accumulation points, fr
the stable side, we find a continuum of growth modes t
cross zero at decreasing values ofQ/q and become positive
Every zero crossing of a growth mode with wave numb
Q corresponds to a bifurcation off the singlet branch o
new solution branch with wave numberQ. For example, for
Q/q51/2, the wavelength of the new structure is twice th
of the main branch. Thus, the new solution corresponds
doublet (N52). Similarly,Q/q51/3 corresponds to the bi
furcation point of triplets (N53) andQ/q51/4 to the bifur-
cation point of quadruplets (N54), etc. To illustrate the bi-
furcation sequence further we have plotted in Fig. 5
Floquet stability spectrum showing the growth rate of t
perturbation as a function of the perturbation wave numb
The diagram is drawn for a solution on the main branch w
a Peclet number that is slightly higher than the Peclet nu
ber corresponding to the Eckhaus instability. This point
stable against perturbations withQ50 but already unstable
against perturbations with a wave number greater than a m
ginal stable wave number,Qc , denoted by a solid circle in
Fig. 5. Since the growth rate with wave numberQc is cross-
ing zero, a new branch corresponding to a multiplet w
wavenumberQc will bifurcate off the main branch at this
P value. As we approach the Eckhaus point or the fold fr
the stable side with respect toQ50,Qc approaches zero an
multiplets with monotonically increasing values ofN will
bifurcate off the main branch until we reach the accumu
tion points for whichN5`. In other words, the points on th
singlet branch that are unstable against perturbations
Bloch wave numberQ50 are accumulation points of mu
s
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tiplets. Furthermore, the multiplets, except the doub
should bifurcate inpairs due to thex→2x symmetry in the
problem.

Figure 2 shows that both sets of multiplets near the t
accumulation points exhibit the correct bifurcation sequen
first a doublet branches off, followed by a triplet, which
turn is followed by a quadruplet. Furthermore, we have ve
fied that the highP triplet comes as a pair~see inset!. Due to
computational constraints we have not searched for hig
order multiplets nor for any other secondary branches.

In Ref. @16# a similar bifurcation sequence was demo
strated to exist in the one-dimensional Swift-Hohenbe
model. As in our case, this sequence was connected wi
long wavelength Eckhaus instability of the main branch
solutions. It is worth pointing out two minor differences b
tween the sequence in@16# and the sequence in Fig. 2. Fir
of all, unlike in the Swift-Hohenberg equation, both s
quences in our model approach the accumulation point fr
the stable side of theQ50 instability. Secondly, in the
Swift-Hohenberg equation the doublets were found to bif
cate in pairs as well@20#.

The doublet branch for highP corresponds to the asym
metric cell shapes found in@14#, albeit with larger amplitude,
and is qualitatively similar to the experimentally observ
one. As it branches off the main branch, the cells beco
asymmetric and every other groove becomes shallower.
doublet for lowP on the other hand is connected to a c
elimination mode@19#. This can be clearly seen in Fig.
~doublets!, where every other cell becomes smaller while t
groove depth for every cell remains identical. Both trip
branches for highP ~Fig. 3! have a morphology that re
semble closely that of experimentally observed triplets@5#
while the lowerP triplet branch is qualitatively distinct. This
suggests that the branches that are experimentally rele
are the ones that are bifurcating for highP. This conclusion
is also consistent with Ref.@16# in which it was argued tha
the sequence of multiplet branches that accumulate at
Eckhaus instability in one-dimensional systems, as in eu

FIG. 5. Floquet spectrum of a main branch solution that is E
haus stable. This solution is marginally stable forQ5Qc and is
unstable forQ.Qc . As we approach the Eckhaus instability,Q
approachesQ50 and multiplets with smaller and smaller wav
numbers bifurcate off the main branch.
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tic growth @15#, should be generically unstable. Indeed,
was found in @16# that in the one-dimensional Swift
Hohenberg equation the multiplets generated by the Eckh
instability were unstable. Of course, to determine unambi
ously which branch is relevant for directional solidificatio
we have to perform a stability analysis of all the branch
Unfortunately, this is presently outside the range of our co
putational resources.

Finally, it is worth noting that the inclusion of surfac
tension anisotropy does not change qualitatively the bra
structure. The anisotropy was introduced by replacingd0 by
d0@1215e cos(4u)#. We have carefully examined the ca
for e50.01 corresponding to 1% anisotropy, for which the
exists also two points on the main branch for which t
solution is marginally stable with respect to perturbatio
with Q50. Again, this leads to the sequence of multiple
bifurcation from the main branch and these two points
the accumulation points of these sequences.

In conclusion, we have found a family of new multipl
steady state solutions that originate on the main sin
branch of cells at small and large spacing. These new s
tions are characterized by nonequal grooves and asymm
shapes. The bifurcation points of the branches of multip
coincide with zero crossings of real eigenvalues of the
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bility spectrum of cells from the singlet branch. The shap
of doublets and triplets belonging to the highP set are con-
sistent with experimental observations. The multiplets bif
cating near the Eckhaus instability~low P) on the other hand
do not resemble experimentally observed multiplets and h
been argued here to be unstable. This suggests that onl
high P multiplets are experimentally relevant. What remai
to be investigated is the stability of the highP multiplets. A
recently developed computationally efficient phase fi
method promises to be quite useful for such a study@21#. It
allows one to simulate growth in the absence of kinetics,
is typically the case in low velocity directional solidificatio
experiments. This computational approach can be use
explore the stability of these new structures and, more
portantly, to establish which, if any, of the multiple
branches are selected dynamically. It would be also inter
ing to examine possible secondary branches forking off
multiplet branches.
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