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Cellular multiplets in directional solidification
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We report the existence of new branches of steady state cellular structures in directional solidification. These
structures consist of repeating cellular subunits, or multiplets, each containing a set of distinct cells separated
by unequal grooves. A detailed numerical study of the symmetric model of directional solidification reveals
that all multiplets bifurcate off the main singlet solution branch in two sets. Two points on the main branch,
one corresponding to the onset of the Eckhaus instability at small cell spacing and the other to a fold of this
branch at large spacing, are argued to be separate accumulation points for each set of multiplets. The set of
structures bifurcating near the fold are morphologically similar to experimentally observed multiplets. In
contrast, those bifurcating near the Eckhaus instability do not resemble experimental shapes. Furthermore, they
are argued to be generically unstall81063-651X97)50202-9

PACS numbeps): 81.10.Aj, 81.30.Fb

Directional solidification of alloys or liquid crystals ex- In this paper, we present a numerical study of multiplets
hibits a variety of interfacial patterns. The most basic patterrin directional solidification. Aside from the already observed
is the periodic cellular array that forms when the pulling doublet[14], we find two sets of branches of multiplets that
velocity V exceeds a critical velocity; corresponding to the bifurcate from the main singlet branch. We find that the ex-
onset of the Mullins-Sekerka instabilifyl]. Close to onset, istence of these sets can be understood in terms of the sta-
this array consists of identical cells with wavelengtithat  bility structure of the main branch using analytical argu-
are separated by grooves of equal depth. This regular arrayents similar to those used previously to interpret the
has been investigated extensively, both experimenfaiys]  existence of multiplets in the Swift-Hohenberg equation
and theoretically in diffusive growth models of directional [16]. One set consists of multiplets that are qualitatively
solidification[6—10. similar to the experimentally observed multiplets while the

Recent experiments have demonstrated the existence ofher set exhibits multiplets that have morphologies that are
more complex steady state structures in the directionadlifferent from the experimentally observed ones.
growth of succinonitrile-acetongs]. These structures, or We have investigated the standard equations for the sym-
“multiplets,” consist of groups of cells that are repeated metric model with a nonconstant concentration jump at the
everyN grooves. For example, the basic cellular array condinterface. The basic equations of this model are given by
sists of singlets wittN=1 while a pairwise grouping of cells

leads to doublets witlN=2. Experimentally, these doublets DV2u+Va,u=au, @
were found to be stable while higher order multiplets were

observed to be transient. An example of an experimental u =1—dox—¢lly, )
doublet from Ref[5] can be seen in Fig. 1, which shows that .

the pairwise grouping of cells to doublets leads to asymmet- [K+(1—K)u Ju,= — D a_u - 3
ric cell shapes with a broken parity. Similar parity broken L¥n an| ’

cell shapes have been found numerically in dendritic growth

in a channel in twd11,12 and three dimensiond3] and in  whereu=(C—C,)/AC is the dimensionless concentration
directional solidificatior{ 14]. In addition, higher order mul- field, C is the actual concentratioG,, is the nominal alloy
tiplets were found in a numerical simulation of eutectic concentration, andAC=C,(1/k—1) is the concentration
growth (N=2—7) [15] and in a numerical investigation of jump of the reference planar interface. The values oh the

the one-dimensional Swift-Hohenberg equati@f). liquid and solid sides of the boundary are defined respec-

FIG. 1. An example of a doublet found in the
experimental system of Ref5].
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FIG. 2. Plot of cell tip undercooling vs dimensionless spacing  FiG. 3. Typical shapes of the multiplets corresponding to the
showing the main brancfthick solid ling and multiplet branches pranches in Fig. 2 that bifurcate from the singlet branch on the high

(thin lines. The solid circles on the main branch indicate the pointsp sjde near the fold. These shapes closely resemble the experimen-
at which the solution becomes unstable against a perturbation witfy|ly observed ones.

Bloch wave numbeiQ=0. These two points correspond to the
Eckhaus instabilitylow P) and the fold of the singlet steady state her P=)\V/D, normalized by the number of groovésin
branch(high P). The inset shows a magnification of the bifurcation the subunit. Thus, the wavelength of a singlet is equal to its
sequence accumulating at the fold for high spacing, the wavelength of a doublet is twice its spacing, etc.
) ) N This definition ensures that the multiplet branches in the dia-
tively by u, [Eq. (2)] andus=k(u_—1); k is the partition  gram bifurcate off the main branch in a continuous fashion
coefficient, dy=I"/|m[AC is the chemical capillary length 3ithough the wavelength changes discontinuously at the bi-
wherel" is the Gibbs-Thomson coefficient amd is the li-  fyrcation.
quidus slopel+=[m|AC/g is the thermal length wherg is The main solution branch in Fig. 2 is represented by a
the temperature gradierid, is the solute diffusivity taken to  thick line and corresponds to the basic regular cellular array
be equal in both phases,is the interface curvaturé, is the  with wavelengthx and wave numbeq (i.e., singlets with
z coordinate of the interface,, is the normal velocity, and N=1). We have found two sets of multiplets that bifurcate
[ou/on]= measures the jump in the normal gradienuddt  off the main branch. These sets, one for higfand one for
the boundary. low P, are shown as thin lines in Fig. 2. Typical shapes of
Our calculations are based on the standard boundary intghe multiplets belonging to these sets are shown in Fig. 3 for
gral approaci17] that allows us to recast Eq&l)—(3) into  the highP bifurcation sequence and in Fig. 4 for the low

the single integral equation P bifurcation sequencéhe x andy scales are equal in Figs.
(14K) 3 and 4. The inset of Fig. 2 shows a closeup of the high
ULZJ ds@k+(1—K)u Jo,+D blfurcatlor_l sequence. . '
2 The existence of the multiplets can be explained by study-

JG ing the stability of the main branch. Using the same tech-
XJ dsa—n(l—k)u,_—v

xfde(l—k)uL, (4) W

where s is the arclength coordinate along the solid-liquid
boundary ands is the Green’s function, which corresponds doublets, P=2.2 quadruplets, P=2.25
to Eq.(1). The spatially periodic steady states are found nu-
merically using a Newton-Raphson iteration scheme of the
time-independent integral. Details of this procedure can be

found in[8,9]. For the material parameters we tokk 0.9
corresponding to liquid crystals[18], and dg/lt
=1.14x 10 3. We examined the cell shapes in the nonlinear

regime at the constant dimensionless pulling velocity
Vd,/D=1.614x 102 corresponding to & V. triplets, P=2.5

The complete branch diagram of steady state structures is
presented in Fig. 2 where we plot the cell tip undercooling  F|G. 4. Typical shapes of the multiplets corresponding to the
(defined asd = 1— &;,/17) versus the dimensionless spacing, branches in Fig. 2 that bifurcate from the singlet branch on the low
P/N, for that particular velocity. The dimensionless spacingP side near the Eckhaus instability. These shapes do not have any
is defined as the dimensionless wavelength, the Peclet nurknown experimental counterpart.
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nique as in Ref[19], we perturb the steady states with wave
numberq, rg(s), with a shift along the normal direction of
the general form

rq=r3(5)+nY(S) 8y, o(S)exHiQAS/ST+ w(Q; a)t],

whereQe [— /N, /)] is the Bloch wave vectom(s) is ~ ° °° .
q

the normal unit vector, ansg is the total arclength of the cell o
over a complete period. The Floguet-Bloch theorem implies
that 5, o(s) is a function that has the same periodicity as the
underlying steady stategi o(s+ sg)= dq,0(s)- By solving

the resulting eigenvalue problem we examined the stability
of an infinite cellular array against perturbations of all pos- ‘ ‘ ‘ ‘
sible wavelengths. We have found that the main branch is 0.0 0.1 0.2 0.3 0.4 0.5
unstable against a perturbation with the wave number Q/q

Q=0 at two distinct values of. Those two points are _ _ )
shown in Fig. 2 as solid circles and correspond to, respec- FIG. 5. Floqu_et spec_trurr_1 of a main branch solution that is Eck-
tively, the long wavelength Eckhaus instability at small haus stable. This solution is marginally stable €@« Qc anq is
and the fold of the main branch at high Thus, the main unstable forQ>Qc. As we approach the Eckhaus instability,
branch is stable again§=0 perturbations foP values that approacheQ=0 and multiplets with smaller and smaller wave

are in between these two points, which are argued below tBumbers bifurcate off the main branch.

be accumulation points for the bifurcation sequences of multiplets. Furthermore, the multiplets, except the doublet,
tiplet branches. should bifurcate irpairs due to thex— —x symmetry in the

In the region between these points, on both the low angyroblem.
high P sides, the main branch loses its stability to modes Figure 2 shows that both sets of multiplets near the two
with finite wave numbeQ that are within the first Brillouin  accumulation points exhibit the correct bifurcation sequence:
zone. The first unstable mode we encounter when we afirst a doublet branches off, followed by a triplet, which in
proach either accumulation point is at the edge of the firsturn is followed by a quadruplet. Furthermore, we have veri-
Brillouin zone, i.e.Q/q=0.5. As we move along the singlet fied that the higtP triplet comes as a paisee inset Due to
branch towards either of the two accumulation points, fromcomputational constraints we have not searched for higher
the stable side, we find a continuum of growth modes thabrder multiplets nor for any other secondary branches.
cross zero at decreasing valuesQifg and become positive. In Ref.[16] a similar bifurcation sequence was demon-
Every zero crossing of a growth mode with wave numberstrated to exist in the one-dimensional Swift-Hohenberg
Q corresponds to a bifurcation off the singlet branch of amodel. As in our case, this sequence was connected with a
new solution branch with wave numb&:. For example, for  long wavelength Eckhaus instability of the main branch of
Q/q=1/2, the wavelength of the new structure is twice thatsolutions. It is worth pointing out two minor differences be-
of the main branch. Thus, the new solution corresponds to @ween the sequence ji16] and the sequence in Fig. 2. First
doublet (N=2). Similarly, Q/q=1/3 corresponds to the bi- of all, unlike in the Swift-Hohenberg equation, both se-
furcation point of triplets N=3) andQ/q=1/4 to the bifur-  quences in our model approach the accumulation point from
cation point of quadrupletsN=4), etc. To illustrate the bi- the stable side of th&@ =0 instability. Secondly, in the
furcation sequence further we have plotted in Fig. 5 theSwift-Hohenberg equation the doublets were found to bifur-
Floquet stability spectrum showing the growth rate of thecate in pairs as we(l20].
perturbation as a function of the perturbation wave number. The doublet branch for higR corresponds to the asym-
The diagram is drawn for a solution on the main branch withmetric cell shapes found {r14], albeit with larger amplitude,
a Peclet number that is slightly higher than the Peclet numand is qualitatively similar to the experimentally observed
ber corresponding to the Eckhaus instability. This point isone. As it branches off the main branch, the cells become
stable against perturbations wi=0 but already unstable asymmetric and every other groove becomes shallower. The
against perturbations with a wave number greater than a magoublet for lowP on the other hand is connected to a cell
ginal stable wave numbe@,, denoted by a solid circle in elimination mode[19]. This can be clearly seen in Fig. 4
Fig. 5. Since the growth rate with wave numlggy is cross-  (doublets, where every other cell becomes smaller while the
ing zero, a new branch corresponding to a multiplet withgroove depth for every cell remains identical. Both triplet
wavenumberQ, will bifurcate off the main branch at this branches for highP (Fig. 3) have a morphology that re-
P value. As we approach the Eckhaus point or the fold fromsemble closely that of experimentally observed tripl&h
the stable side with respect@=0, Q. approaches zero and while the lowerP triplet branch is qualitatively distinct. This
multiplets with monotonically increasing values Nf will suggests that the branches that are experimentally relevant
bifurcate off the main branch until we reach the accumula-are the ones that are bifurcating for hifh This conclusion
tion points for whichN=cc. In other words, the points on the is also consistent with Ref16] in which it was argued that
singlet branch that are unstable against perturbations witthe sequence of multiplet branches that accumulate at the
Bloch wave numbeQ=0 are accumulation points of mul- Eckhaus instability in one-dimensional systems, as in eutec-
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tic growth [15], should be generically unstable. Indeed, it bility spectrum of cells from the singlet branch. The shapes
was found in[16] that in the one-dimensional Swift- of doublets and triplets belonging to the highset are con-
Hohenberg equation the multiplets generated by the Eckhausistent with experimental observations. The multiplets bifur-
instability were unstable. Of course, to determine unambigucating near the Eckhaus instabilitpw P) on the other hand
ously which branch is relevant for directional solidification go not resemble experimentally observed multiplets and have
we have to perform a stability analysis of all the branchespeen argued here to be unstable. This suggests that only the
Unfortunately, this is presently outside the range of our comyign p multiplets are experimentally relevant. What remains
putational resources. to be investigated is the stability of the highmultiplets. A

F|'naIIy, .'t is worth noting that the |ncl'u5|.on of surface ecently developed computationally efficient phase field
tension anisotropy does not change qualitatively the branchwthod promises to be quite useful for such a Sz, It

structure. The anisotropy was introduced by Tep'a‘”ﬁ‘@y allows one to simulate growth in the absence of kinetics, as
do[1—15€ cos(46)]. We have carefully examined the case . : : T e
B ; X : is typically the case in low velocity directional solidification
for e=0.01 corresponding to 1% anisotropy, for which there : : :
experiments. This computational approach can be used to

exists also two points on the main branch for which the | the stability of th Ut d )
solution is marginally stable with respect to perturbationsexp ore the stability of these new structures and, more im-

with Q=0. Again, this leads to the sequence of multipletsPC"antly, to establish which, if ‘any, of the multiplet

bifurcation from the main branch and these two points aré)ranches are selected dynamically. It would be also interest-

the accumulation points of these sequences. ing to examine possible secondary branches forking off the
In conclusion, we have found a family of new multiplet Multiplet branches.

steady state solutions that originate on the main singlet

branch of cells at small and large spacing. These new solu- This research was supported by DOE Grant No. DE-

tions are characterized by nonequal grooves and asymmetfdG02-92ER45471 and benefited from CRAY time at the Na-

shapes. The bifurcation points of the branches of multipletéional Energy Resources Supercomputer Center. We thank R.

coincide with zero crossings of real eigenvalues of the stafrivedi for providing us with Fig. 1.
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